Using MAIDR in Shiny Applications
JooYoung Seo
2025-12-09
Source:vignettes/shiny-integration.Rmd
shiny-integration.RmdOverview
MAIDR integrates seamlessly with Shiny applications, allowing you to create accessible, interactive data visualizations in web apps. This vignette shows how to use MAIDR’s Shiny functions to build accessible dashboards.
Shiny Integration Functions
MAIDR provides two functions for Shiny integration:
-
maidr_output()- UI function to create output container -
render_maidr()- Server function to render plots
These functions work together to display accessible MAIDR plots in your Shiny app.
Basic Shiny App Example
Here’s a complete minimal Shiny app using MAIDR:
library(shiny)
library(ggplot2)
library(maidr)
# Define UI
ui <- fluidPage(
titlePanel("MAIDR in Shiny - Basic Example"),
sidebarLayout(
sidebarPanel(
selectInput("plot_type",
"Choose Plot Type:",
choices = c("Bar Chart", "Histogram", "Scatter")
),
br(),
p("The plot on the right is fully accessible with keyboard navigation and screen reader support.")
),
mainPanel(
h3("Interactive Accessible Plot"),
maidr_output("accessible_plot", height = "500px")
)
)
)
# Define Server
server <- function(input, output) {
output$accessible_plot <- render_maidr({
if (input$plot_type == "Bar Chart") {
# Bar chart
bar_data <- data.frame(
Category = c("A", "B", "C", "D"),
Value = c(25, 40, 30, 35)
)
ggplot(bar_data, aes(x = Category, y = Value)) +
geom_bar(stat = "identity", fill = "steelblue") +
labs(title = "Sample Bar Chart") +
theme_minimal()
} else if (input$plot_type == "Histogram") {
# Histogram
hist_data <- data.frame(values = rnorm(500, mean = 100, sd = 15))
ggplot(hist_data, aes(x = values)) +
geom_histogram(bins = 30, fill = "coral", color = "black") +
labs(title = "Sample Histogram", x = "Values", y = "Frequency") +
theme_minimal()
} else {
# Scatter plot
scatter_data <- data.frame(
x = rnorm(50),
y = rnorm(50),
group = sample(c("Group A", "Group B"), 50, replace = TRUE)
)
ggplot(scatter_data, aes(x = x, y = y, color = group)) +
geom_point(size = 3, alpha = 0.7) +
labs(title = "Sample Scatter Plot") +
theme_minimal()
}
})
}
# Run the app
shinyApp(ui = ui, server = server)Interactive Dashboard Example
Here’s a more comprehensive dashboard with multiple plots:
library(shiny)
library(shinydashboard)
library(ggplot2)
library(maidr)
# Define UI
ui <- dashboardPage(
dashboardHeader(title = "MAIDR Dashboard"),
dashboardSidebar(
sidebarMenu(
menuItem("Bar Charts", tabName = "bar", icon = icon("chart-bar")),
menuItem("Statistical Plots", tabName = "stats", icon = icon("chart-line")),
menuItem("Scatter Plots", tabName = "scatter", icon = icon("circle"))
)
),
dashboardBody(
tabItems(
# Bar charts tab
tabItem(
tabName = "bar",
fluidRow(
box(
title = "Product Sales",
status = "primary",
solidHeader = TRUE,
width = 6,
maidr_output("bar_plot", height = "400px")
),
box(
title = "Regional Comparison",
status = "primary",
solidHeader = TRUE,
width = 6,
maidr_output("dodged_bar_plot", height = "400px")
)
)
),
# Statistical plots tab
tabItem(
tabName = "stats",
fluidRow(
box(
title = "Distribution",
status = "primary",
solidHeader = TRUE,
width = 6,
maidr_output("histogram_plot", height = "400px")
),
box(
title = "Box Plot Comparison",
status = "primary",
solidHeader = TRUE,
width = 6,
maidr_output("boxplot_plot", height = "400px")
)
)
),
# Scatter plots tab
tabItem(
tabName = "scatter",
fluidRow(
box(
title = "Correlation Analysis",
status = "primary",
solidHeader = TRUE,
width = 12,
maidr_output("scatter_plot", height = "500px")
)
)
)
)
)
)
# Define Server
server <- function(input, output) {
# Bar plot
output$bar_plot <- render_maidr({
sales_data <- data.frame(
Product = c("A", "B", "C", "D", "E"),
Sales = c(150, 230, 180, 290, 210)
)
ggplot(sales_data, aes(x = Product, y = Sales)) +
geom_bar(stat = "identity", fill = "steelblue") +
labs(title = "Product Sales", x = "Product", y = "Sales Amount") +
theme_minimal()
})
# Dodged bar plot
output$dodged_bar_plot <- render_maidr({
regional_data <- data.frame(
Region = rep(c("North", "South", "East"), each = 2),
Quarter = rep(c("Q1", "Q2"), 3),
Sales = c(100, 120, 150, 180, 90, 110)
)
ggplot(regional_data, aes(x = Region, y = Sales, fill = Quarter)) +
geom_bar(stat = "identity", position = position_dodge(width = 0.8)) +
labs(title = "Regional Sales Comparison") +
theme_minimal()
})
# Histogram
output$histogram_plot <- render_maidr({
hist_data <- data.frame(values = rnorm(1000, mean = 100, sd = 15))
ggplot(hist_data, aes(x = values)) +
geom_histogram(bins = 30, fill = "coral", color = "black") +
labs(title = "Score Distribution", x = "Score", y = "Frequency") +
theme_minimal()
})
# Boxplot
output$boxplot_plot <- render_maidr({
ggplot(iris, aes(x = Species, y = Petal.Length)) +
geom_boxplot(fill = "lightblue", alpha = 0.7) +
labs(title = "Petal Length by Species") +
theme_minimal()
})
# Scatter plot
output$scatter_plot <- render_maidr({
scatter_data <- data.frame(
height = rnorm(100, 170, 10),
weight = rnorm(100, 70, 8),
gender = sample(c("Male", "Female"), 100, replace = TRUE)
)
ggplot(scatter_data, aes(x = height, y = weight, color = gender)) +
geom_point(size = 3, alpha = 0.7) +
labs(
title = "Height vs Weight Analysis",
x = "Height (cm)",
y = "Weight (kg)"
) +
theme_minimal()
})
}
# Run the app
shinyApp(ui = ui, server = server)Reactive Data Example
MAIDR works seamlessly with Shiny’s reactive programming:
library(shiny)
library(ggplot2)
library(maidr)
ui <- fluidPage(
titlePanel("Reactive MAIDR Plot"),
sidebarLayout(
sidebarPanel(
sliderInput("n_points",
"Number of Points:",
min = 10,
max = 200,
value = 50
),
selectInput("distribution",
"Distribution:",
choices = c("Normal", "Uniform", "Exponential")
)
),
mainPanel(
maidr_output("reactive_plot", height = "500px")
)
)
)
server <- function(input, output) {
# Reactive data generation
plot_data <- reactive({
set.seed(123) # For reproducibility
if (input$distribution == "Normal") {
data.frame(x = rnorm(input$n_points))
} else if (input$distribution == "Uniform") {
data.frame(x = runif(input$n_points, -3, 3))
} else {
data.frame(x = rexp(input$n_points, rate = 1) - 1)
}
})
# Render plot
output$reactive_plot <- render_maidr({
ggplot(plot_data(), aes(x = x)) +
geom_histogram(bins = 30, fill = "skyblue", color = "black") +
labs(
title = paste(input$distribution, "Distribution"),
subtitle = paste("n =", input$n_points),
x = "Value",
y = "Frequency"
) +
theme_minimal()
})
}
shinyApp(ui = ui, server = server)Accessibility Features in Shiny
When using MAIDR in Shiny, your plots automatically include:
1. Keyboard Navigation
- Users can Tab to reach the plot
- Arrow keys navigate through data points
- Screen readers announce values
Best Practices
1. Set Appropriate Heights
# Good: Explicit height
maidr_output("plot1", height = "500px")
# Also good: Responsive height
maidr_output("plot2", height = "auto")2. Add Descriptive Context
fluidRow(
box(
title = "Sales Trend Analysis",
status = "primary",
maidr_output("sales_plot"),
hr(),
p("This plot shows monthly sales trends. Use arrow keys to navigate through months.")
)
)3. Test with Keyboard Only
- Ensure all interactive elements are reachable
- Test Tab navigation order
- Verify plot navigation works
4. Provide Alternative Text
output$my_plot <- render_maidr({
p <- ggplot(data, aes(x, y)) +
geom_bar(stat = "identity") +
labs(
title = "Clear, Descriptive Title",
subtitle = "Additional context about the data",
x = "X-axis label with units",
y = "Y-axis label with units"
)
p
})Performance Considerations
For large Shiny apps with many plots:
- Use
isolate()for non-essential reactivity - Cache expensive computations with
reactive() - Consider plot complexity - simpler plots load faster
- Test with real data sizes
Complete Example Application
See the complete MAIDR dashboard example in:
system.file("examples", "maidr_dashboard.R", package = "maidr")This example demonstrates: - Multiple plot types - Sidebar navigation - Accessibility features - Responsive layout - Professional styling
Deployment
When deploying Shiny apps with MAIDR:
- Ensure all dependencies are installed
- Test accessibility in production
- Monitor performance
- Provide user documentation
Troubleshooting
Common Issues
Plot doesn’t appear: - Check that ggplot object is
returned from render_maidr() - Verify output ID matches
between UI and server
Keyboard navigation not working: - Ensure plot container is visible - Check browser console for JavaScript errors
Screen reader issues: - Test with multiple screen readers - Verify ARIA labels are present
Learn More
- Getting Started - MAIDR basics
- Plot Types - All supported visualizations
- Shiny documentation - shiny.posit.co
- Accessibility guidelines - WCAG 2.1
Getting Help
- GitHub issues: maidr/issues
- Package documentation:
?maidr::maidr_output - Posit Community: forum.posit.co